As a consequence of the above result,we have that implicative semilattices form an algebraic variety.
作為一個推論給出:蘊涵半格構成一個代[代數(shù)]簇。
,x n], P=Q the root ideal of Q and J the subset of ring assume Q∩J≠ , then the algebraic varieties of idea quotient V(Q∶J)= .
設Q是多項式環(huán)k[x1 ,x2 ,… ,xn]中的P 準素理想 ,P =Q是理想Q的根理想 ,J是k[x1 ,x2 ,… ,xn]的子集 ,若Q∩J≠ ,則Q對J的商理想Q∶J的代[代數(shù)]簇V(Q∶J) = ;若Q∩J = ,則Q∶J的代[代數(shù)]簇V(Q∶J) =V(Q∶J) ;若P∩J= ,則V(Q∶J) =V(Q) 。
In this paper by applying some equivalent formulas in first-order logic,this problem is transformed into one which checks whether another quasi-algebraic variety is empty.
判定擬代[代數(shù)]簇的包含關系問題不能由計算其相應的飽和理想來確定 。
Let X be a n dimensional projective variety,x be a fixed point in X,and let C_t(X,_X(1)) be the set of rational curves C of degree t passing through x in X,p_t(X)=dimC_t(X,_X(1)) for any positive integer.
設X是n維射影代[代數(shù)]簇,取定X中一點x,設Ct(X,X(1))表示X中的過x點的t次有理曲線的集合,pt(X)=d imCt(X,X(1))。
Some Researches on Approximate Implicitization and Piecewise Algebraic Varieties;
近似隱式化和分片代[代數(shù)]簇某些問題的研究
Some Researches on Multivariate Splines and Computation of Piecewise Algebraic Varieties;
多元樣條與分片代[代數(shù)]簇計算的若干研究
A Theorem on the Adjoint System for Higher-Dimensional Algebraic Varieties with Ample Vector Bundles;
一個高維代[代數(shù)]簇上具有豐富向量叢的伴隨系定理