In the vicinity of bifurcation singularities of non redundant robot manipulators, null space based quasi arc length method will face difficulties due to the existence of more then one solution branches of the inverse kinematics while tracking the desired path in the workspace.
為此 ,本文通過(guò)計(jì)算[分]支點(diǎn)的局部模型 ,提出從[分]支點(diǎn)開(kāi)始向兩側(cè)延拓的解曲線計(jì)算方法 ,有效地完成了路徑跟蹤求解 ,在關(guān)節(jié)空間獲得光滑的運(yùn)動(dòng)軌
In this paper an effective method to identify bifurcation and limit points in path follow ing is presented with a numerical example.
提出一個(gè)在路徑跟蹤計(jì)算中識(shí)別[分]支點(diǎn)和極值點(diǎn)的實(shí)用方法,給出了算例。
A new normal family theorem is obtained that let W be a family of algebroid function in a domain D of sphere V,if for all p D, there is a neighborhood U(p) with existing at most k branch points in U(p),furthermore there exist fix complex values a1,a2,a3 for each fW,then W is normal in D.
證明了代數(shù)體函數(shù)的正規(guī)定理:設(shè)W為區(qū)域D內(nèi)的一個(gè)k-值代數(shù)體函數(shù)族,若對(duì)p D,其充分小的鄰域U(p)使得對(duì)f W至多有k個(gè)[分]支點(diǎn)(重點(diǎn)按重?cái)?shù)記),又W中每個(gè)函數(shù)都不取固定的3個(gè)互不相同的復(fù)數(shù),則W在D內(nèi)正規(guī)。
In the present paper we discuss the conformal minimal brasification of the branch points of the conformal branch immersion.
對(duì)曲面到Kaehler流形的共形極小分支浸入的[分]支點(diǎn)給一種(q,r)型分類,進(jìn)而研究到復(fù)射影空間的共形極小分支浸入,得知相應(yīng)的?。儞Q和?。儞Q在[分]支點(diǎn)的性態(tài)。