Automatic Face Recognition ( AFR ) is challenging in image processing and analyzing.
自動(dòng)人臉識(shí)別技術(shù) ( AFR ) 是一項(xiàng)極具挑戰(zhàn)性的前沿研究課題.
互聯(lián)網(wǎng)
In addition, elaborate system design is also as important for developing robust and practical AFR systems.
另外,對(duì)開(kāi)發(fā)魯棒實(shí)用的AFR系統(tǒng) 而言, 研究應(yīng)用系統(tǒng)設(shè)計(jì)層面的諸多工程技術(shù)問(wèn)題同樣至關(guān)重要.
互聯(lián)網(wǎng)
In this thesis, the above - mentioned key issues are studied , aiming at robust and practical AFR systems.
以設(shè)計(jì)開(kāi)發(fā)魯棒、實(shí)用的AFR系統(tǒng)為目標(biāo),本文重點(diǎn)探討了人臉識(shí)別中的上述關(guān)鍵問(wèn)題.
互聯(lián)網(wǎng)
Model based AFR control strategy requires accurate engine model first.
基于模型的空燃比控制策略首先要求有精確的模型,均值模型是非線性模型,其精度高、表達(dá)形式簡(jiǎn)單,能夠滿足控制過(guò)程實(shí)時(shí)性的要求,是比較理想的模型.
互聯(lián)網(wǎng)
Based on the traditional eigenfaces method, this paper presents an improving approach to AFR.
在傳統(tǒng)的“特征臉”方法基礎(chǔ)上, 提出了一種改進(jìn)的人臉自動(dòng)識(shí)別方法.
互聯(lián)網(wǎng)
However, evaluation results and practical experience have shown that AFR technologies are currently far from mature.
但測(cè)試和實(shí)踐經(jīng)驗(yàn)表明:非理想條件下的人臉識(shí)別技術(shù)還遠(yuǎn)未成熟!
互聯(lián)網(wǎng)