名校網(wǎng)

光柵式傳感器


光柵式傳感器的寫法


光柵式傳感器介紹

采用光柵疊柵條紋原理測量位移的傳感器。光柵是在一塊長條形的光學(xué)玻璃上密集等間距平行的刻線,刻線密度為10~100線/毫米。由光柵形成的疊柵條紋具有光學(xué)放大作用和誤差平均效應(yīng),因而能提高測量精度。傳感器由標(biāo)尺光柵、指示光柵、光路系統(tǒng)和測量系統(tǒng)四部分組成(見圖)。標(biāo)尺光柵相對于指示光柵移動時,便形成大致按正弦規(guī)律分布的明暗相間的疊柵條紋。這些條紋以光柵的相對運(yùn)動速度移動,并直接照射到光電元件上,在它們的輸出端得到一串電脈沖,通過放大、整形、辨向和計數(shù)系統(tǒng)產(chǎn)生數(shù)字信號輸出,直接顯示被測的位移量。傳感器的光路形式有兩種:一種是透射式光柵,它的柵線刻在透明材料(如工業(yè)用白玻璃、光學(xué)玻璃等)上;另一種是反射式光柵,它的柵線刻在具有強(qiáng)反射的金屬(不銹鋼)或玻璃鍍金屬膜(鋁膜)上。這種傳感器的優(yōu)點(diǎn)是量程大和精度高。光柵式傳感器應(yīng)用在程控、數(shù)控機(jī)床和三坐標(biāo)測量機(jī)構(gòu)中,可測量靜、動態(tài)的直線位移和整圓角位移。在機(jī)械振動測量、變形測量等領(lǐng)域也有應(yīng)用。

基本介紹

一、前言

1978年加拿大渥太華通信研究中心的K·O·Hill等人首次在摻鍺石英光纖中發(fā)現(xiàn)光纖的光敏效應(yīng),并采用駐波寫入法制成世界上根光纖光柵。19*,美國聯(lián)合技術(shù)研究中心的G·Meltz等人實(shí)現(xiàn)了光纖Bragg光柵(FBG)的UV激光側(cè)面寫入技術(shù),使光纖光柵的制作技術(shù)實(shí)現(xiàn)了突破性進(jìn)展。隨著光纖光柵制造技術(shù)的不斷完善,其應(yīng)用的成果日益增多,從光纖通信、光纖傳感到光計算和光信息處理的整個領(lǐng)域都將由于光纖光柵的實(shí)用化而發(fā)生革命性的變化,光纖光柵技術(shù)是光纖技術(shù)中繼摻鉺光纖放大器(EDFA)技術(shù)之后的又一重大技術(shù)突破。

光纖光柵是利用光纖中的光敏性制成的。所謂光纖中的光敏性是指激光通過摻雜光纖時,光纖的折射率將隨光強(qiáng)的空間分布發(fā)生相應(yīng)變化的特性。而在纖芯內(nèi)形成的空間相位光柵,其實(shí)質(zhì)就是在纖芯內(nèi)形成一個窄帶的(透射或反射)濾波器或反射鏡。利用這一特性可制造出許多性能獨(dú)特的光纖器件,它們都具有反射帶寬范圍大、附加損耗小、體積小,易與光纖耦合,可與其它光器件兼容成一體,不受環(huán)境塵埃影響等一系列優(yōu)異性能。

光纖光柵的種類很多,主要分兩大類:一是Bragg光柵(也稱為反射或短周期光柵),二是透射光柵(也稱為長周期光柵)。光纖光柵從結(jié)構(gòu)上可分為周期性結(jié)構(gòu)和非周期性結(jié)構(gòu),從功能上還可分為濾波型光柵和色散補(bǔ)償型光柵;其中,色散補(bǔ)償型光柵是非周期光柵,又稱為啁啾光柵(chirp光柵)。目前光纖光柵的應(yīng)用主要集中在光纖通信領(lǐng)域和光纖傳感器領(lǐng)域。

在光纖傳感器領(lǐng)域,光纖光柵傳感器的應(yīng)用前景十分廣闊。由于光纖光柵傳感器具有抗電磁干擾、尺寸小(標(biāo)準(zhǔn)裸光纖為125um)、重量輕、耐溫性好(工作溫度上限可達(dá)400℃~600℃)、復(fù)用能力強(qiáng)、傳輸距離遠(yuǎn)(傳感器到解調(diào)端可達(dá)幾公里)、耐腐蝕、高靈敏度、無源器件、易形變等優(yōu)點(diǎn),早在1988年就成功地應(yīng)用在航空、航天領(lǐng)域中作為有效的無損檢測當(dāng)中,同時光纖光柵傳感器還可應(yīng)用于化學(xué)醫(yī)藥、材料工業(yè)、水利電力、船舶、煤礦等各個領(lǐng)域,以及在土木工程領(lǐng)域中(如建筑物、橋梁、水壩、管線、隧道、容器、高速公路、機(jī)場跑道等)的混凝土組件和結(jié)構(gòu)中測定結(jié)構(gòu)的完整性和內(nèi)部應(yīng)變狀態(tài),從而建立靈巧結(jié)構(gòu),并進(jìn)一步實(shí)現(xiàn)智能建筑。

二、光纖光柵傳感器的工作原理

我們知道,光柵的Bragg波長lB由下式?jīng)Q定:

lB=2nL(1)

式中,n—芯模有效折射率;L—光柵周期。

當(dāng)光纖光柵所處環(huán)境的溫度、應(yīng)力、應(yīng)變或其它物理量發(fā)生變化時,光柵的周期或纖芯折射率將發(fā)生變化,從而使反射光的波長發(fā)生變化,通過測量物理量變化前后反射光波長的變化,就可以獲得待測物理量的變化情況。如利用磁場誘導(dǎo)的左右旋極化波的折射率變化不同,可實(shí)現(xiàn)對磁場的直接測量。此外,通過特定的技術(shù),還可實(shí)現(xiàn)對應(yīng)力和溫度的分別測量和同時測量。通過在光柵上涂敷特定的功能材料(如壓電材料),對電場等物理量的間接測量也能實(shí)現(xiàn)。

1、啁啾光纖光柵傳感器的工作原理

上面介紹的光柵傳感器系統(tǒng),光柵的幾何結(jié)構(gòu)是均勻的,對單參數(shù)的定點(diǎn)測量很有效,但在需要同時測量應(yīng)變和溫度或者測量應(yīng)變或溫度沿光柵長度的分布時就顯得力不從心。此時,采用啁啾光纖光柵傳感器就就是一個不錯的選擇。

啁啾光纖光柵由于其優(yōu)異的色散補(bǔ)償能力而應(yīng)用在高比特遠(yuǎn)程通信系統(tǒng)中。與光纖Bragg光柵傳感器的工作原理基本相同,在外界物理量的作用下,啁啾光纖光柵除了DlB的變化外,光譜的展寬也會發(fā)生變化。這種傳感器在應(yīng)變和溫度均存在的場合是非常有用的。由于應(yīng)變的影響,啁啾光纖光柵反射信號會拓寬,峰值波長也會發(fā)生位移,而溫度的變化則由于折射率的溫度依賴性(dn/dT),僅會影響重心的位置。因此通過同時測量光譜位移和展寬,就可以同時測量應(yīng)變和溫度。

2、長周期光纖光柵(LPG)傳感器的工作原理

長周期光纖光柵(LPG)的周期一般認(rèn)為有數(shù)百微米,它在特定的波長上可把纖芯的光耦合進(jìn)包層,其公式如下:

li=(n0-niclad)·L(2)

式中,n0—纖芯的折射率;niclad—i階軸對稱包層模的有效折射率。

光在包層中將由于包層/空氣界面的損耗而迅速衰減,留下一串損耗帶。一個獨(dú)立的LPG可能在一個很寬的波長范圍上有許多的共振,其共振的中心波長主要取決于芯和包層的折射率差,由應(yīng)變、溫度或外部折射率變化而產(chǎn)生的任何變化都能在共振中產(chǎn)生大的波長位移,通過檢測Dli,就可獲得外界物理量變化的信息。LPG在給定波長上共振帶的響應(yīng)通常有不同的幅度,因而適用于構(gòu)建多參數(shù)傳感器。

三、光纖光柵傳感器的應(yīng)用

1、在地球動力學(xué)中的應(yīng)用

在地震檢測等地球動力學(xué)領(lǐng)域中,地表驟變等現(xiàn)象的原理及其危險性的估定和預(yù)測是非常復(fù)雜的,而火山區(qū)的應(yīng)力和溫度變化是目前為止能夠揭示火山活動性及其關(guān)鍵活動范圍演變的最有效手段心。光纖光柵傳感器在這一領(lǐng)域中的應(yīng)用主要是在巖石變形、垂直震波的檢測以及作為地形檢波器和光學(xué)地震儀使用等方面?;顒訁^(qū)的應(yīng)變通常包含靜態(tài)和動態(tài)兩種,靜態(tài)應(yīng)變(包括由火山產(chǎn)生的靜態(tài)變形等)一般都定位于與地質(zhì)變形源很近的距離,而以震源的震波為代表的動態(tài)應(yīng)變則能夠在與震源較遠(yuǎn)的地球周邊環(huán)境中檢測到。為了得到相當(dāng)準(zhǔn)確的震源或火山源的位置,更好地描述源區(qū)的幾何形狀和演變情況,需要使用密集排列的應(yīng)力-應(yīng)變測量儀。光纖光柵傳感器是能實(shí)現(xiàn)遠(yuǎn)距離和密集排列復(fù)用傳感的寬帶、高網(wǎng)絡(luò)化傳感器,符合地震檢測等的要求,因此它在地球動力學(xué)領(lǐng)域中無疑具有較大的潛在用途。有報道指出,光纖光柵傳感器已成功檢測了頻率為0.1Hz~2Hz,大小為10-9e的巖石和地表動態(tài)應(yīng)變。

2、在航天器及船舶中的應(yīng)用

先進(jìn)的復(fù)合材料抗疲勞、抗腐蝕性能較好,而且可以減輕船體或航天器的重量,對于快速航運(yùn)或飛行具有重要意義,因此復(fù)合材料越來越多地被用于制造航空航海工具(如飛機(jī)的機(jī)翼)。

為全面衡量船體的狀況,需要了解其不同部位的變形力矩、剪切壓力、甲板所受的抨擊力,普通船體大約需要100個傳感器,因此波長復(fù)用能力極強(qiáng)的光纖光柵傳感器最適合于船體檢測。光纖光柵傳感系統(tǒng)可測量船體的彎曲應(yīng)力,而且可測量海浪對濕甲板的抨擊力。具有干涉探測性能的16路光纖光柵復(fù)用系統(tǒng)成功實(shí)現(xiàn)了帶寬為5kHz范圍內(nèi)、分辨率小于10ne/(Hz)1/2的動態(tài)應(yīng)變測量。

另外,為了監(jiān)測一架飛行器的應(yīng)變、溫度、振動,起落駕駛狀態(tài)、超聲波場和加速度情況,通常需要100多個傳感器,故傳感器的重量要盡量輕,尺寸盡量小,因此最靈巧的光纖光柵傳感器是的選擇。另外,實(shí)際上飛機(jī)的復(fù)合材料中存在兩個方向的應(yīng)變,嵌人材料中的光纖光柵傳感器是實(shí)現(xiàn)多點(diǎn)多軸向應(yīng)變和溫度測量的理想智能元件。

3、在民用工程結(jié)構(gòu)中的應(yīng)用

民用工程的結(jié)構(gòu)監(jiān)測是光纖光柵傳感器最活躍的領(lǐng)域。對于橋梁、礦井、隧道、大壩、建筑物等來說,通過測量上述結(jié)構(gòu)的應(yīng)變分布,可以預(yù)知結(jié)構(gòu)局部的載荷及狀況,方便進(jìn)行維護(hù)和狀況監(jiān)測。光纖光柵傳感器可以貼在結(jié)構(gòu)的表面或預(yù)先埋入結(jié)構(gòu)中,對結(jié)構(gòu)同時進(jìn)行沖擊檢測、形狀控制和振動阻尼檢測等,還以監(jiān)視結(jié)構(gòu)的缺陷情況。另外,多個光纖光柵傳感器可以串接成一個傳感網(wǎng)絡(luò),對結(jié)構(gòu)進(jìn)行準(zhǔn)分布式檢測,并通過計算機(jī)對傳感信號進(jìn)行遠(yuǎn)程控制。

光纖光柵傳感器可以檢測的建筑結(jié)構(gòu)之一為橋梁。應(yīng)用時,一組光纖光柵被粘于橋梁復(fù)合筋的表面,或在梁的表面開一個小凹槽,使光柵的裸纖芯部分嵌進(jìn)凹槽中(便于防護(hù))。如果需要更加完善的保護(hù),則是在建造橋時把光柵埋進(jìn)復(fù)合筋。同時,為了修正溫度效應(yīng)引起的應(yīng)變,可使用應(yīng)力和溫度分開的傳感臂,并在每一個梁上均安裝這兩個臂。

兩個具有相同中心波長的光纖光柵代替法布里-珀*涉儀的反射鏡,形成全光纖法布里-珀*涉儀(FFPI),利用低相干性使干涉的相位噪聲最小化,這一方法實(shí)現(xiàn)了高靈敏度的動態(tài)應(yīng)變測量。用FFPI結(jié)合另外兩個FBG,其中一個光柵用來測應(yīng)變,另一個被保護(hù)起來(免受應(yīng)力影響),以測量和修正溫度效應(yīng),同時實(shí)現(xiàn)了對三個量的測量:溫度、靜態(tài)應(yīng)變、瞬時動態(tài)應(yīng)變。這種方法兼有干涉儀的相干性和光纖布拉格光柵傳感器的優(yōu)點(diǎn),在5me的測量范圍內(nèi),實(shí)現(xiàn)了小于1me的靜態(tài)應(yīng)變測量精度、0.1℃的溫度靈敏度和小于1ne/(Hz)1/2的動態(tài)應(yīng)變靈敏度。

4、在電力工業(yè)中的應(yīng)用

光纖光柵傳感器因不受電磁場干擾和可實(shí)現(xiàn)長距離低損耗傳輸,從而成為電力工業(yè)應(yīng)用的理想選擇。電線的載重量、變壓器繞線的溫度、大電流等都可利用光纖光柵傳感器測量。

在電力工業(yè)中,電流轉(zhuǎn)換器可把電流變化轉(zhuǎn)化為電壓變化,電壓變化可使壓電陶瓷(PZT)產(chǎn)生形變,而利用貼于PZT上的光纖光柵的波長漂移,很容易得知其形變,進(jìn)而測知電流強(qiáng)度。這是一種較為廉價的方法,并且不需要復(fù)雜的電隔離。另外,由大雪等對電線施加的過量的壓力可能會引發(fā)危險事件,因此在線檢測電線壓力非常重要,特別是對于那些不易檢測到的山區(qū)電線。光纖光柵傳感器可測電線的載重量,其原理為把載重量的變化轉(zhuǎn)化為緊貼電線的金屬板所受應(yīng)力的變化,這一應(yīng)力變化即可被粘于金屬板上的光纖光柵傳感器探測到。這是利用光纖光柵傳感器實(shí)現(xiàn)遠(yuǎn)距離惡劣環(huán)境下測量的實(shí)例,在這種情況下,相鄰光柵的間距較大,故不需快速調(diào)制和解調(diào)。

5、在醫(yī)學(xué)中的應(yīng)用

醫(yī)學(xué)中用的傳感器多為電子傳感器,它對許多內(nèi)科手術(shù)是不適用的,尤其是在高微波(輻射)頻率、超聲波場或激光輻射的過高熱治療中。由于電子傳感器中的金屬導(dǎo)體很容易受電流、電壓等電磁場的干擾而引起傳感頭或腫瘤周圍的熱效應(yīng),這樣會導(dǎo)致錯誤讀數(shù)。近年來,使用高頻電流、微波輻射和激光進(jìn)行熱療以代替外科手術(shù)越來越受到醫(yī)學(xué)界的關(guān)注,而且傳感器的小尺寸在醫(yī)學(xué)應(yīng)用中是非常重要的,因?yàn)樾〉某叽鐚θ梭w組織的傷害較小,而光纖光柵傳感器正是目前為止能夠做到的最小的傳感器。它能夠通過最小限度的侵害方式測量人體組織內(nèi)部的溫度、壓力、聲波場的精確局部信息。到目前為止,光纖光柵傳感系統(tǒng)已經(jīng)成功地檢測了病變組織的溫度和超聲波場,在30℃~60℃的范圍內(nèi),獲得了分辨率為0.1℃和精確度為±0.2℃的測量結(jié)果,而超聲場的測量分辨率為10-3atm/Hz1/2,這為研究病變組織提供了有用的信息。

光纖光柵傳感器還可用來測量心臟的效率。在這種方法中,醫(yī)生把嵌有光纖光柵的熱稀釋導(dǎo)管插入病人心臟的右心房,并注射人一種冷溶液,可測量肺動脈血液的溫度,結(jié)合脈功率就可知道心臟的血液輸出量,這對于心臟監(jiān)測是非常重要的。

6、在化學(xué)傳感中的應(yīng)用

光纖光柵傳感器可用于化學(xué)傳感,因?yàn)楣鈻诺闹行牟ㄩL隨折射率的變化而變化,而光柵間倏失波的相互作用以及環(huán)境中的化學(xué)物質(zhì)的濃度變化都會引起折射率的變化。

長周期光柵(longperiodfibergrating,LPFG)與布拉格光纖光柵一樣,也是由光纖軸上產(chǎn)生周期性的折射率調(diào)制而形成,其周期一般大于100μm。它的耦合機(jī)理是:向前傳輸?shù)睦w芯基模被耦合入幾個特定波長的向前傳輸?shù)陌鼘幽?,包層模很快損失掉,所以LPFG基本上沒有后向反射,在其透射譜中有幾個特定波長的吸收峰。LPFG對光纖包層材料折射率的變化比上述的光纖布拉格光柵更為敏感,包層材料折射率的任何變化都會改變傳輸光譜的特性,使吸收峰發(fā)生改變,所以長周期光柵折射率測量系統(tǒng)的分辨率可實(shí)現(xiàn)10-7的靈敏度。目前已經(jīng)用長周期光柵測出了許多化學(xué)物質(zhì)的濃度,包括蔗糖、乙醇、己醇、十六烷、CaCl2、NaCl等,原則上,任何具有吸收峰譜并且其折射率在1.3和1.45之間的化學(xué)物質(zhì)都可用長周期光柵進(jìn)行探測。

四、結(jié)束語

除上述應(yīng)用外,光纖光柵傳感器還在其他領(lǐng)域得到了應(yīng)用,并且許多方面的性能都比傳統(tǒng)的機(jī)電類傳感器更穩(wěn)定、更可靠、更準(zhǔn)確。光纖光柵傳感器可以用于應(yīng)力、應(yīng)變或溫度等物理量的傳感測量,具有較高的靈敏度和測量范圍。在光纖若干個部位寫入不同柵距的光纖光柵,就可以同時測定若干部位相應(yīng)物理量及其變化,實(shí)現(xiàn)準(zhǔn)分布式光纖傳感。總之,光纖光柵傳感器的應(yīng)用是一個方興未艾的領(lǐng)域,有著非常廣闊的發(fā)展前景。

目前對光纖光柵傳感器的研究方向主要有三個方面:

1、對傳感器本身及進(jìn)行橫向應(yīng)變感測和高靈敏度、高分辨率、且能同時感測應(yīng)變和溫度變化的傳感器研究;

2、對光柵反射信號或透射信號分析和測試系統(tǒng)的研究,目標(biāo)是開發(fā)低成本、小型化、可靠且靈敏的探測技術(shù);

3、對光纖光柵傳感器的實(shí)際應(yīng)用研究,包括封裝技術(shù)、溫度補(bǔ)償技術(shù)、傳感器網(wǎng)絡(luò)技術(shù)。

目前限制光纖光柵傳感器應(yīng)用的最主要障礙是傳感信號的解調(diào),正在研究的解調(diào)方法很多,但能夠?qū)嶋H應(yīng)用的解調(diào)產(chǎn)品并不多,而且價格較高。其次,光纖光柵傳感器應(yīng)用中的其他問題也非常重要,如:

1、由于光源帶寬有限,而應(yīng)用中一般要求光柵的反射譜不能重疊,因此可復(fù)用光柵的數(shù)目受到限制;

2、如何實(shí)現(xiàn)在復(fù)合材料中同時測量多軸向的應(yīng)變,以再現(xiàn)被測體的多軸向應(yīng)變形貌;

3、如何實(shí)現(xiàn)大范圍、高精度、快速實(shí)時測量;

4、如何正確地分辨光柵波長變化是由溫度變化引起的還是由應(yīng)力產(chǎn)生的應(yīng)變引起的等。

有效地解決上述問題對于實(shí)現(xiàn)廉價、穩(wěn)定、高分辨率、大測量范圍、多光柵復(fù)用的傳感系統(tǒng)具有重要意義。

工作原理

利用光柵的莫爾條紋現(xiàn)象進(jìn)行測量的。光柵傳感器一般由光源、標(biāo)尺光柵、指示光柵和光電器件組成,光電器件接收到的信號經(jīng)電路處理后可得到兩光柵的相對位移。光柵式傳感器有多種不同的光學(xué)系統(tǒng),其中,比較常見的有透射式光柵傳感器和反射式光柵傳感器。

(一)透射式光柵傳感器

圖7-30和圖7-31分別為透射式長光柵和圓光柵傳感器。這里采用的光源是發(fā)光二極管,有的發(fā)光二極管本身將透鏡集成在一起,光線平行性比較好,不需要外加透鏡。有的發(fā)光二極管本身沒有集成透鏡,需外加透鏡改善光線的平行性。另外白熾燈也常用作光柵傳感器的光源。標(biāo)尺光柵和指示光柵形成莫爾條紋,這里采用的指示光柵是一種裂相光柵,一般由四部分組成,每一部分的刻線間距與對應(yīng)的標(biāo)尺光柵完全相同,但各個部分之間在空間上依次錯開nW+W/4(n為整數(shù),W為長光柵的柵距或者圓光柵的柵距角)的距離,指示光柵與標(biāo)尺光柵刻線平行放置,它們之間形成光閘莫爾條紋(也可采用指示光柵與標(biāo)尺光柵刻線間有很小的夾角,形成橫向莫爾條紋),用光電器件分別接收裂相光柵四個部分的透射光,可以得到相位差依次為p/2的四路信號

式中U0——電信號的直流電平,對應(yīng)于莫爾條紋的平均光強(qiáng);

Um——電信號的幅值,對應(yīng)于莫爾條紋明暗的變化。

這四相電信號的后續(xù)處理過程是:首先將u1、u3和u2、u4分別兩兩相減,消除信號中的直流電平,得到兩路相位差為90°的信號,然后將它們送入專門的電子細(xì)分和辨向電路,可以實(shí)現(xiàn)對位移的測量。需要說明的是,相位差為90°的兩路信號是辨向電路所必需的,單獨(dú)一路信號無法實(shí)現(xiàn)辨向。

(二)反射式光柵傳感器

典型的反射式光柵傳感器原理如圖7-32所示。發(fā)光二極管經(jīng)聚光透鏡形成平行光,平行光以一定角度射向裂相指示光柵,莫爾條紋是由標(biāo)尺光柵的反射光與指示光柵作用形成,光電器件接收莫爾條紋的光強(qiáng)。

這種光路的傳感器一般用在數(shù)控機(jī)床上,主光柵常為金屬光柵,它堅固耐用,而且線膨脹系數(shù)與機(jī)床基體的線膨脹系數(shù)接近,能減小溫度誤差。

產(chǎn)品特點(diǎn)

①精度高。光柵式傳感器在大量程測量長度或直線位移方面僅僅低于激光干涉?zhèn)鞲衅鳌T趫A分度和角位移連續(xù)測量方面,光柵式傳感器屬于精度的。

②大量程測量兼有高分辨力。感應(yīng)同步器和磁柵式傳感器也具有大量程測量的特點(diǎn),但分辨力和精度都不如光柵式傳感器。

③可實(shí)現(xiàn)動態(tài)測量,易于實(shí)現(xiàn)測量及數(shù)據(jù)處理的自動化。

④具有較強(qiáng)的抗干擾能力,對環(huán)境條件的要求不像激光干涉?zhèn)鞲衅髂菢訃?yán)格,但不如感應(yīng)同步器和磁柵式傳感器的適應(yīng)性強(qiáng),油污和灰塵會影響它的可靠性。主要適用于在實(shí)驗(yàn)室和環(huán)境較好的車間使用。

詞語首拼